Remember T1000 from Terminator 2? Scientists are planning something similar but with a cuter name – SMARTLET
Microelectronics that can self-assemble into ‘living technology’? What could possibly go wrong?
When you purchase through links on our site, we may earn an affiliate commission.Here’s how it works.
Self-assembling ‘living technology’ is now within reach, thanks to researchers who’ve developed a form of microbotic electronic units called SMARTLETs that can behave like biological cells.
The team at the Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN) has built these tiny modules with silicon chiplets between folds. These SMARTLETs can be encoded with the information to form complex structures – operating much like you’d imagine how the T1000 from Terminator 2 may reconstruct itself. Of course, Robert Patrick’s terrifying performance will remain a work of fiction, but we could one day see these SMARTLETs form the components fitted into, say, thebest smartphonesor thebest business laptops.
They rely on matching physical bar codes to fluidly connect with one another, and show the capacity to learn so they can improve their own performance during construction, and could soon be capable of self-assembly into complex artificial organisms.
One step closer to the wonders of ‘living technology’
‘Living technology’ is a field of technology in which researchers are attempting to create systems and structures that mirror the way biological systems function, with usefulness and attributes taken from life-like properties.
The idea was proposed 20 years ago and has made great strides forward in the last few years, according to the team from MAIN’s paper inAdvanced Materials, thanks to microbiotic flexible electronics. This latest advancement falls under the category of microelectronic morphogenesis – which is the creation of form under microelectronic control.
The chiplets, which resemble biological cells in function and size, are aware of the state of assembly, and potential errors, which means they can adapt to any issues, repair, and make corrections midway through the assembly.
They can also induce disassembly and perform many functions including harvesting power, forming antennae, material redistribution, and others.
Are you a pro? Subscribe to our newsletter
Sign up to the TechRadar Pro newsletter to get all the top news, opinion, features and guidance your business needs to succeed!
What makes these modules so impressive is the fact they can self-assemble, disassemble, and self-sort so they can be effectively recycled. They can be reconfigured and redeployed in different artificial organisms. If they’re damaged, they can effectively self-repair too.
The authors of the study say this technology can bring us one step closer to realizing a vision of fully sustainable technology, with the reuse of components made from such modules that can be reprogrammed and reassigned like building blocks.
More from TechRadar Pro
Keumars Afifi-Sabet is the Technology Editor for Live Science. He has written for a variety of publications including ITPro, The Week Digital and ComputerActive. He has worked as a technology journalist for more than five years, having previously held the role of features editor with ITPro. In his previous role, he oversaw the commissioning and publishing of long form in areas including AI, cyber security, cloud computing and digital transformation.
New fanless cooling technology enhances energy efficiency for AI workloads by achieving a 90% reduction in cooling power consumption
Samsung plans record-breaking 400-layer NAND chip that could be key to breaking 200TB barrier for ultra large capacity AI hyperscaler SSDs
Anker Nebula Mars 3 review: A powerful and truly portable projector